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LOW-THRUST TRANSFER TO INTERPLANETARY
TRAJECTORIES FROM LUNAR TRAJECTORIES WITH
RIDESHARE

Darcey R. Graham; Jacob A. Englander] Nicholas J. Rattenbury: and John E.
Cater®

Accessing interplanetary space is challenging when using low thrust systems. In-
jecting spacecraft onto interplanetary trajectories is difficult with small launch ve-
hicles, but it is possible to instead transfer to an interplanetary trajectory from a
lunar flyby. Such cases are useful, for example, in rideshares between lunar and
interplanetary missions. This work examines the problem of rideshare for small
satellites onto lunar flyby trajectories, with transfers to an interplanetary trajec-
tory. Low thrust interplanetary trajectories are examined starting from a rideshare
mission on a lunar trajectory using delivery systems based on a modified Rocket
Lab USA Electron vehicle and Photon stage.

INTRODUCTION

The preliminary design of low-thrust trajectories poses a complex problem; there are many often
non-intuitive variables to decide, such as the control vector determining the direction and magnitude
of thrusting, and a large design space must be searched. Complexity also arises from the continuous
nature of many low-thrust systems. High-thrust systems can produce the necessary velocity change
for a manoeuvre in a space of time short enough to be considered instantaneous. Low-thrust systems
such as electric propulsion must thrust for hours or days, so cannot be discretised in this way.
Preliminary designers must search a large space for feasible solutions to a problem. These low-
fidelity solutions are fed as an initial guess into higher-fidelity models capable only of searching a
much smaller problem space.

Many methods for preliminary trajectory design exist, making use of direct or indirect optimi-
sation techniques. Indirect methods'? solve the dual problem for the state and co-state vectors.
This tends to give a more accurate solution than direct methods, but requires a better initial guess,
including for the non-intuitive co-state vectors. Direct methods~ typically convert the problem
into a non-linear programming (NLP) problem which can be solved using an NLP solver such as
SNOPT.® Shape-based methods’® are useful in eliminating the need to guess non-intuitive vari-
ables by assuming, and describing analytically, the shape of the trajectory instead of searching for a
thrust profile. However, these methods lack flexibility and may call for infeasibly high thrust.
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This study uses the Sims-Flanagan transcription'? to discretise a continuous low-thrust trajectory
into a series of time steps. For each time step the thrust and perturbations are approximated as an
instantaneous impulse at its centre. This removes thrust and perturbations from the equations of
motion, simplifying their integration for optimisation. Here the NLP problem is solved by finincon
in Matlab. The solution uses a monotonic basin hopping (MBH) algorithm!'~!3 which searches for
local minima before jumping to a new point in the problem space. This allows a global search to be
conducted and enables feasible solutions to be found with little input from a mission designer.

Following the success of NASA’s MarCO mission'* demonstrating the interplanetary capabilities
of CubeSats, interest has been sparked in exploring the possibilities of small satellite missions.
Smaller satellites are cheaper to produce and launch, and with the development of features such
as Rocket Lab’s Maxwell CubeSat Dispenser, the ease of integration is growing. The goal of this
work was to develop a model capable of finding low-thrust Earth-Venus trajectories starting from
a rideshare mission injecting into a non-escape trajectory from a Rocket Lab Electron vehicle and
Photon stage.

However, small satellites are unlikely to be given their own dedicated launch, posing an additional
challenge to interplanetary mission designers. On the rideshare mission considered here, a small
satellite does not have a launch injection into an interplanetary trajectory as assumed by many
previous models. This study applies a multiple gravity-assist low-thrust (MGALT) method!>~7 to
the problem of escape from the Earth-Moon system starting on a lunar trajectory on a rideshare
mission. The resulting escape is patched to an Earth-Venus trajectory. Third-body perturbations
are included. The model developed in this study is capable of finding Earth-Venus trajectories from
launch with very little input from the mission designer.

MULTIPLE GRAVITY-ASSIST LOW-THRUST (MGALT) MODEL

The MGALT model used in this study is based on the Sims-Flanagan transcription'® combined
with a two-body patched conic model. The effect of the gravitational force of additional bodies
are included as perturbations. The Sims-Flanagan transcription divides the trajectory into phases,
which each start and end at a control point. Control points can be planets, asteroids, or free bodies
in space, and can be selected by an outer loop optimiser or the mission designer. The control points
in the Earth-Moon escape portion of this trajectory are: launch from Earth, the first and second
lunar gravity assists, and escape at the edge of the Earth’s sphere of influence. For the trip to Venus,
which consists of one phase, the control points are simply the Earth escape previously determined,
and arrival at Venus.

This is a forwards-backwards shooting method, meaning the phase is split into two halves. The
first half is propagated forwards in time from the earlier control point. The second half is propagated
backwards in time from the later control point. Each half of the phase ends in a match point at which
nonlinear constraints drive the forwards- and backwards-shooting arcs to meet.

Each phase is further divided into /N segments of equal time as shown in Figure 1. The continuous
thrusting of the spacecraft, as well as third body perturbations, are approximated as an instantaneous
change in velocity and mass at the centre of each segment. An n-body Sims-Flanagan transcription
such as this has been applied previously to the Jupiter system.!® In between these impulses, the
state vector of the spacecraft is propagated using Kepler’s equation.'® The propagator used in this
study uses universal variables?® and the Laguerre-Conway root-finding method,?! as this rapidly
converges to a solution from a very poor initial guess.?!»%
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Figure 1. A single MGALT phase showing division into NV segments with impulses at

their centre. in indicates the state vector before (-) and after (+) each impulse, and
m indicates spacecraft mass.

The change in velocity at the centre of each segment is determined by Equation 1:
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where k indicates the index of the time step, a superscript 4 indicates the state immediately after the
impulse, a superscript — the state immediately prior to the impulse, v is the velocity vector of the
spacecraft, Avy,,, is the maximum change in velocity which can be achieved by the thrusters over
the entire segment as calculated in Equation 3, p,, is the gravitational parameter of an additional
body acting to perturb motion, r,, is the distance between the spacecraft and that body, Aty is the
time over which the segment takes place, and uy, is the control vector.

In Equation 1, the first term is the velocity just before the impulse, the second term is the change
in velocity due to thrusting, and the third term is the change in velocity due to perturbing bodies.
Ephemeris data on the perturbing bodies is provided by SPICE.?*?* In the model presented here,
the two-body system in the Earth-escape leg of the journey has the Earth as its central body with the
Moon as a perturbing body. In the interplanetary portion of the journey, the Sun is the central body,
and the Earth and target planet (in this case, Venus) are perturbing bodies. The control vector is a
decision variable controlling the thrusting of the spacecraft with magnitude constrained to be less
than unity:

gl = \fu2, + 23, + 2, <1, @)

which is the first constraint enforced by the optimiser. The maximum possible change in velocity is
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where N,ctive 1S the number of active thrusters, D is the thruster duty cycle, T« is the maximum
thrust for the segment, and my, is the mass at the impulse.

The change in mass is instantaneous though not affected by third-body perturbations as using fuel
to fire thrusters is the only cause of changes in mass. The instantaneous change in mass at the centre
of each segment is
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I, is the specific impulse, and go is the gravitational acceleration at the surface of the Earth. A
constant T, ,x is assumed, which in reality will change throughout the flight. MGALT models exist
which also include a power model, where power to the thrusters depends on proximity to the Sun
and the power useage of the spacecraft bus.?>2% As more power will be available as the spacecraft
grows closer to the Sun (and so to Venus), this is less important for the level of fidelity considered
here but could be included in future work.

Table 1. Decision variables for the Earth-Moon escape portion of the trajectory.

Variable | Description Number
to Launch epoch 1
Voo Launch impulse magnitude 1
C3 Initial characteristic energy 1
w Argument of perigee of initial orbit 1
e Eccentricity of initial orbit 1
i Inclination of initial orbit 1
Q Right ascension of ascending node of initial orbit 1
v True anomaly of initial orbit 1
At, Time of flight of phase N,
Voo, Excess velocity vector prior to gravity assist 3(N, — 1)
Voo, Excess velocity vector immediately after gravity assist 3(Np, —1)
vy Velocity vector at escape from Earth-Moon system 3
my Final phase mass N,
ry Point of escape on edge of Earth sphere of influence in Cartesian coordinates 3
u Control vector 3N

The decision variables in describing an Earth-escape trajectory and interplanetary trajectory are
shown respectively in Tables 1 and 2, where N, is the number of phases and NV is the number of
segments in each phase. To complete the characterisation of the NLP optimisation problem to be
solved, the remaining constraints to be defined are the match point constraints, time constraints
and gravity assist constraints. As previously stated, the MGALT model uses forwards-backwards



Table 2. Decision variables for the interplanetary portion of the trajectory.

Variable | Description Number
to Launch epoch 1
\z Excess velocity at Earth escape 3
vy Excess velocity on arrival at Venus 3
At, Time of flight of phase N,
Voo, Excess velocity vector prior to gravity assist 3(N, —1)
Voo, Excess velocity vector immediately after gravity assist | 3(N, — 1)
m; Initial mass at Earth escape 1
my Final phase mass N,
u Control vector 3N

shooting with a central match point constrained to be continuous. This is done by imposing the
match point constraint on the state vector:

rp—rg
c=Xp—Xp=|vp—vVvr | =0, (6)
mp—mpg

where X and X are state vectors at the match point of the backwards and forwards propagated
arcs, respectively. The time of flight must also be constrained so that the sum of the time of flights
of each phase does not exceed the total time of flight. The constraint to achieve this is

Np

CTOF = Z Atpi < Atmax- (7)
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Gravity Assists

Gravity assists are modelled using a patched conic approximation with a zero radius sphere of
influence. The change in velocity is modelled by selecting the velocity before and after the gravity
assist manoeuvre as decision variables, with nonlinear constraints ensuring the manoeuvre is phys-
ically realisable. Although the velocity magnitude relative to the central body may increase, the
magnitude of the velocities relative to the flyby body (in the escape portion, the Moon) must be
equal to satisfy conservation of momentum. This provides the constraint function:

C’Uoo = UOOf - ,UOOZ' = 05 (8)

where vo, is excess velocity immediately after and voo, is excess velocity immediately before a
gravity assist manoeuvre.

The other important condition is that the spacecraft must not pass lower than a specified safe
distance hg,t. above the flyby target. This second nonlinear constraint on gravity assist manoeuvres
occurs at the end of each phase and also ensures the turn angle of the flyby is feasible:
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where 7periapse 18 the closest approach of the flyby to the centre of the target, 7,04y is the radius of
the target, and

Voo, Voo
0 = arccos (Zf) (10)
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OPTIMISATION WITH MONOTONIC BASIN HOPPING (MBH)

The problem is cast as an NLP problem and solved by MATLAB’s finincon function. The initial
guess for each of the decision variables is chosen randomly by the model within bounds specified
by the designer. This enables a wide parameter space to be explored with little prior knowledge of
the solution, permitting the discovery of trajectories which may not otherwise have been apparent.
The gradients are determined by finite differences. Upper and lower bounds can be specified or
a decision variable can be forced by a mission designer is desired to guide a search or help meet
a requirement. However, it has been shown that providing analytical gradients to the optimiser
significantly increases the likelihood of convergence to a feasible solution.”> A further issue is that
fimincon cannot take advantage of the sparsity pattern of the problem Jacobian.”’ Using a solver
which can, such as SNOPT,® would significantly decrease run time.

In order to search a wide global problem space based on one very poor initial guess, an MBH
algorithm is utilised.'!- 122> MBH searches in the local region of an initial guess by repeating solves
of the NLP problem, then after a meeting the stop condition or after finding a local minimum, jumps
to a new initial guess for its search. The algorithm stores the results to an archive and selects the
best possible one; that is, the one which minimises the cost function (in this case, the cost function
maximises final mass), while satisfying the nonlinear constraints.

ESCAPING THE EARTH-MOON SYSTEM

The Earth-Moon escape trajectory is split into three phases: a thrust arc from launch to the first
lunar gravity assist; a second thrust arc between the first and second lunar gravity assist manoeuvres;
and a coast from the second lunar gravity assist to escape at the edge of the Earth’s sphere of
influence, considered here to be 1.47x10°%km. The spacecraft is considered to have escaped the
Earth-Moon system when it reaches the edge of the sphere of influence.

The spacecraft begins from a launch achievable by an Electron launch vehicle, in this case as-
suming a launch C3 of -2km?/s> and mass of 10.5kg. The thruster onboard the small satellite is
assumed to have a constant thrust of 0.9mN when firing, and a specific impulse of 1800s. Each of
the three phases are split into 40 segments. The model generates a random initial guess, then MBH
finds a minimum with an objective function maximising final mass. The decision variables for this
trajectory are shown in Table 1. For the results presented here, lower bounds were placed on the
eccentricity to be greater than 0.967, as this permits the initial orbit to reach the Moon while also
starting a safe distance above the Earth. True anomaly was set to O to force the trajectory to start



y direction [km]

x direction [km)] «10°

Figure 2. An example Earth escape trajectory generated using the method described
here. The Earth is at the origin, the Moon’s orbit the grey dashed line, spacecraft
trajectory the solid black line, and lunar gravitational assists are red dots.
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Figure 3. A different view of the trajectory shown in Figure 2. This shows the tra-
jectory in all three dimensions. The Earth is at the origin, the Moon’s orbit the grey
dashed line, spacecraft trajectory the solid black line, and lunar gravitational assists
are red dots.
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Figure 4. A different view of the trajectory shown in Figure 2. This demonstrates
how each phase of the trajectory has motion out of the Earth-Moon plane. The Earth
is at the origin, the Moon’s orbit the grey dashed line, spacecraft trajectory the solid
black line, and lunar gravitational assists are red dots.

close to the Earth, and inclination was set to 39° as this is the lowest inclination possible from a
launch from Rocket Lab’s New Zealand launch site. It should be noted that escape trajectories can
still be found with different bounds, or no guess for any variable, as befits the mission designer.

Table 3. Results from the low-thrust Earth escape trajectory shown in Figure 2. All orbital elements
here are the initial orbital elements. v, is final excess velocity at escape.

Parameter Value

Launch date 14:42:45 17" January 2020
Argument of perigee —169.29°

Eccentricity 0.967

Inclination 39.00°

Right ascension of ascending node | —182.88°

True anomaly 0°

Voo s 0.4048 km/s

Time of flight 64.913 days

Final mass 10.349 kg

Figures 2 shows the Earth-escape trajectory generated which uses the start conditions and pro-
duces the end results listed in Table 3. Figures 3 and 4 show the same trajectory in three dimensions
to give a clearer impression of the out-of-plane motion. They show the lunar gravity assists changing
the trajectory as needed to achieve escape, a result further illustrated by the plot of the magnitude
of velocity over time in Figure 5. The jumps in velocity shown indicate the instantaneous change in
velocity caused by the gravity assists. Figure 6 shows the change in mass over the trajectory, which
steadily decreases as the spacecraft thrusts, then levels out during the coast arc. Gravity assists, like
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Figure 5. The magnitude of velocity over time of the trajectory in Figure 2. The
discontinuities are the instantaneous changes in velocity due to lunar gravity assist.
Dotted vertical red lines indicate when the gravity assists occur.
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Figure 6. The mass over time of the trajectory in Figure 2.

third-body perturbations, have no effect on mass.

In previous work using MGALT, an outer loop solver has been used to autonomously decide on
the flyby sequence.’> An outer loop optimiser could be applied to this situation to eliminate a need
for the mission designer to decide on the number of lunar flybys.
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Figure 7. An Earth-Venus trajectory with starting conditions equal to the end point
of the trajectory in Figure 2. The Sun is at the origin, the Earth’s orbit is the blue
dashed line, Venus’ orbit is the brown dashed line, and the spacecraft trajectory is the
solid black line.

Table 4. Results from the low-thrust Earth escape trajectory shown in Figure 7. v, is final excess
velocity relative to Venus.

Parameter Value

Launch date 12:37:39 22" March 2020
Arrival date 14:38:53 05" February 2023
Time of flight | 1050.1 days

Voo s 1.3890 km/s

Final mass 6.2624 kg

EARTH-VENUS TRAJECTORY

The second trajectory generated is the journey from the Earth to Venus. The initial conditions
of this are set as the end conditions of the Earth-Moon escape trajectory, so that together a single
continuous trajectory from injection into Earth orbit to arrival at Venus is generated. The decision
variables for this trajectory are shown in Table 1. The starting conditions are fixed, rather than being
decision variables, to ensure continuity. The single phase was divided into 100 segments. Launch
epoch, initial mass, and velocity at Earth escape are forced to be equal to the final values from the
Earth-escape trajectory. Since the interplanetary stage consists of a single phase with no gravity
assist manoeuvre, no decision variables for velocity before or after gravity assist were needed, only
for final velocity on arrival at Venus. Final velocity relative to Venus was constrained to be less than
1.5 km/s as higher velocities offer poorer opportunities for flybys low enough to provide much time
for science missions to take place.

10
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Figure 8. The magnitude of velocity over time of the trajectory in Figure 7.
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Figure 9. The mass over time of the trajectory in Figure 7.

Figure 7 shows the heliocentric Earth-Venus trajectory. The values of parameters associated
with the trajectory are presented in Table 4. These show the spacecraft must make several spirals
inward towards the Sun before its thrusting, modelled as continuous and always on, provides enough
velocity change to meet Venus. Figure 8 shows the velocity over time. The large increase at the
end is caused by closer approach with Venus, as Venus’ third-body perturbations provide more
acceleration closer it. Figure 9 shows the changing mass, which decreases when the thrusters are

fired.
Overall, the journey from launch to arrival at Venus takes 1115 days (3.05 years) and burns 4.2376
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kg of fuel. Better trajectories are possible but hindered by fixing the start conditions, so future work
is possible in allowing the optimiser for the Earth-Venus trajectory to change the decision variables
of Earth-escape trajectory.

There is also scope for future work in modelling arrival at Venus more rigorously. The Earth-
Venus trajectory could be patched to a third Venus-centred model, with the start conditions for
Venus capture or flyby equal to the final conditions of the Earth-Venus trajectory. Furthermore, an
outer loop optimiser could be used to control the flyby sequence both during Earth-Moon escape
to explore the effects of different numbers of lunar gravity assists, and during the Earth-Venus
trajectory.

CONCLUSIONS

An automatic process for the preliminary trajectory design of low-thrust small satellites is sought
after to save a mission designer having to supply a difficult, non-intuitive initial guess. Further dif-
ficulties arise as small satellites are highly unlikely to have a dedicated launch, so must be launched
in rideshare missions instead of being injected directly onto a desired interplanetary trajectory. This
work uses an MGALT model based off the Sims-Flanagan transcription and patched conics to de-
velop a model capable of generating trajectories from the Earth-Moon system using lunar gravity
assist manoeuvres from a launch achievable by an Electron vehicle. The results of this are patched
as the start point for an Earth-Venus trajectory. Combined, the model generates a low-fidelity pre-
liminary design for a low-thrust trajectory to Venus starting from a non-interplanetary launch from
Earth, including modelling Earth escape with lunar gravity assists.
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